Post

Model Predictive Control Part 2. Vehicle Lateral Dynamic Model

Motivation

First of all, we must ask: Why do we need to establish a dynamic model for vehicle lateral control? Simply put, when a vehicle operates at higher speeds, the assumption in kinematic models (such as the bicycle model) that “The direction of tire velocity aligns with the vehicle’s orientation” no longer holds. With centripetal force increasing quadratically with speed, the total lateral force acting on the vehicle become significant. Therefore, the introduction of a dynamic model aims to establish higher-order connections to better describe the non-linear characteristics of vehicle.

Model Assumptions

To simplify the model while maintaining generality, the dynamic model is built upon the following assumptions:

1.The angle between the tire velocity direction and the vehicle’s longitudinal direction denoted as θv (referred to as tire velocity angle) is small and satisfies the small angle assumption:

θvtanθv

2.The angle between the tire steering angle δ and the tire velocity angle θv denoted as α (referred to as tire slip angle) is small.

3.The vehicle’s longitudinal velocity remains unchanged:

Vx:=Constant

4.Neglecting the influence of road banking angles ϕ on vehicle.

Coordinate System

This model is established under the Front-Left-Universe (FLU) inertial coordinate system. The origin of the coordinate system is fixed at the vehicle’s center of mass, with the x-axis pointing in the vehicle’s longitudinal direction towards the front. The y-axis is perpendicular to the x-axis and points to the left of the vehicle, while the z-axis is perpendicular to both the x and y axes, pointing upwards. It’s worth noting that the global (map) coordinate system is the East-North-Universe (ENU). The coordinate system is shown in sketch below

coordinate system

Force Analysis

force analysis

According to Newton’s second law, the force in the y direction (vehicle’s lateral) could be expressed as

Fyf+Fyr=may

where Fyf and Fyr are the forces acting on the vehicle’s front and rear tires in the y direction respectively, m is the mass of vehicle, and ay is the vehicle’s acceleration in the y direction.

The vehicle’s acceleration in the y direction consists of two parts:

  1. The acceleration caused by the movement of the vehicle in the y direction, denoted as y¨
  2. The centripetal acceleration of the vehicle, denoted as ayc
ay=y¨+ayc=y¨+ω2R=y¨+ψ˙2R=y¨+Vxψ˙

Substituting ay back to lateral force equation, we have

Fyf+Fyr=m(y¨+Vxψ˙)

For the yaw dynamics analysis along the z-axis, torque balance yields:

Izψ¨=lfFyflrFyr

where lf and lr are the distances from the vehicle’s center of mass to the front and rear wheels, respectively.

Next, let’s analyze the lateral forces Fyf and Fyr. Experimental evidence suggests that when the tire slip angle α is small, the magnitude of lateral force on the tire is proportional to the tire slip angle. The tire slip angle is defined as the angle between the tire’s steering angle and the tire velocity angle.

Therefore, the slip angle of the front wheels (steering wheels) αf is given by

αf=δθvf

where δ is the front wheel steering angle and θvf is the front wheel velocity angle

Similarly, for the rear wheels (assuming they cannot steer), the slip angle is:

αr=0θvr=θvr

where θvr is the rear wheel velocity angle

Based on these points, the lateral tire forces can be rewritten as follows:

Fyf=2Cαf(δθvf)Fyr=2Cαrθvr

where Cαf and Cαr are the lateral stiffness coefficients for the front and rear wheels, respectively

Using the small angle assumption and the kinematic equations, we have:

θvftan(θvf)=y˙+lfψ˙Vxθvrtan(θvr)=y˙lrψ˙Vx

Rearange the equation

y¨=2m[CαfδCαf+CαrVxy˙+Cαflf+CαrlrVxψ˙]Vxψ˙ψ¨=2Iz(CαflfδCαflfCαrlrVxy˙Cαflf2+Cαrlr2Vxψ˙)

Rewrite the above equation into matrix form

[y˙y¨ψ˙ψ¨]=[010002(Cαf+Cαr)mVx02(Cαflf+Cαrlr)mVxVx000102(CαflfCαrlr)IzVx02(Cαflf2+Cαrlr2)IzVx][yy˙ψψ˙]+[02Cαfm02CαflfIz]δ

Error Dynamic Model

Setting the state variables in the dynamic model as errors will facilitate the design of subsequent feedback controllers. Therefore, define error state variables as follows:

e1:=yydeslateral errore2:=ψψdesfront wheel heading error

The ideal yaw rate is given by:

ψ˙des=VxR

The ideal lateral acceleration is:

aydes=y¨des+aycdes=0+Vx2R=Vxψ˙des

Therefore, the lateral error e1 can be rewritten as:

e¨1=ayaydes=y¨+Vxψ˙Vxψ˙des=y¨+Vx(ψ˙ψ˙des)=y¨+Vxe˙2

Since Vx is constant, integrating the above equation yields:

e˙1=y˙+Vx(ψψdes)=y˙+Vxe2

From above, we obtain that

y˙=e˙1Vxe2y¨=e¨1Vxe˙2ψ˙=ψ˙des+e˙2

Substituting above variables into the equations, we can get

(e¨1Vxe˙2)=2m[CαfδCαf+CαrVx(e˙1Vxe2)+Cαflf+CαrlrVx(ψ˙des+e˙2)]Vx(ψ˙des+e˙2)ψ¨=2Iz(CαflfδCαflfCαrlrVx(e˙1Vxe2)Cαflf2+Cαrlr2Vx(ψ˙des+e˙2))

Rearange to simplify the equations

e¨1=2Cαfmδ+2(Cαf+Cαr)mVxe˙1+2(Cαf+Cαr)me2+2(Cαflf+Cαrlr)mVxe˙2+(2(Cαflf+Cαrlr)mVxVx)ψ˙desψ¨=2CαflfIzδ+2(CαflfCαrlr)IzVxe˙1+2(CαflfCαrlr)Ize2+2(Cαflf2+Cαrlr2)IzVxe˙2+2(Cαflf2+Cαrlr2)IzVxψ˙des

Then rewrite the dynamics in matrix form

[e˙1e¨1e˙2e¨2]=[010002(Cαf+Cαr)mVx2(Cαf+Cαr)m2(Cαflf+Cαrlr)mVx000102(CαflfCαrlr)IzVx2(CαflfCαrlr)Iz2(Cαflf2+Cαrlr2)IzVx][e1e˙1e2e˙2]+[02Cαfm02CαflfIz]δ+[02(Cαflf+Cαrlr)mVxVx02(Cαflf2+Cαrlr2)IzVx]ψ˙des

Finally, the continuous-time error dynamics could be expressed as

x˙=Ax+Bδ+Bcψ˙des

where

x=[e1e˙1e2e˙2]A=[010002(Cαf+Cαr)mVx2(Cαf+Cαr)m2(Cαflf+Cαrlr)mVx000102(CαflfCαrlr)IzVx2(CαflfCαrlr)Iz2(Cαflf2+Cαrlr2)IzVx]B=[02Cαfm02CαflfIz]Bc=[02(Cαflf+Cαrlr)mVxVx02(Cαflf2+Cαrlr2)IzVx]

This model represents the error dynamics of the lateral position, lateral velocity, front-wheel heading angle, and angular velocity errors. It provides a foundation for designing controllers to regulate the vehicle’s lateral motion.

This post is licensed under CC BY 4.0 by the author.